
Rarely is an over-night success,
With the advent of both Gigabit Ethernet (GbE) and the Linux operating system, we saw the emergence of large (1,024 or more) clusters of high-performance servers. These clusters were often designed to focus on particular computing tasks, typically single applications representing complex computational problems. These problems were particularly thorny because they involved very chatty sophisticated programs that modeled fluid dynamics (ex. Boeing and airflow over a wing) or finite particle analysis (ex. Ford and GM with simulated car crash models) or seismic analysis (ex. Saudi Aramco and oil production). Don’t get me wrong, there were also many more like modeling nuclear weapons storage, but the above were just a few of dozens of classes of problems. So, the HPC crowd was seeking networking which was even faster and more efficient than generic Transmission Control Protocol (TCP) over GbE. They’d also realized that the Linux kernel was beginning to bottleneck their overall performance, so they started to explore options for bypassing the Kernel altogether.
This June the most popular Kernel bypass communications stack, the Message Passing Interface(MPI), will celebrate its 25th anniversary. MPI represented the dawn of a new approach to networking, a ULN communications stack. For MPI to achieve its desired performance objectives, it required a lower level networking device driver. In those early days, you could use the Virtual Interface Architecture(VIA) promoted by Intel, Microsoft and Compaq, which eventually became Infiniband’s Remote Direct Memory Access(RDMA), or Myrinetpromoted by Myricom. It should be noted that these weren’t the only two options, just the two most highly utilized at the time. Since then Myrinet has faded away, and Infiniband has dominated HPC.
In parallel to the maturing of ULN, we’ve had an explosion in core counts on CPUs. This year Intel will begin rolling out premium server-based processor chips supporting up to 48-cores, while AMD counters with a 64. On the surface, this is excellent news, but it further complicates other system-wide server performance issues, most notably access to the network. Since most servers are a dual socket, this brings the potential maximum core counts to 96 and 128 respectively. What we’ve noticed though through internal testing is that often as the total number of processing cores on a server increases beyond ten the operating system typically becomes the networking performance bottleneck. As mentioned previously the High-Performance Computing (HPC) market anticipated this issue long ago.
In 2010 there was a move by several companies to bring HPC technology to markets outside HPC. With this, we saw the introduction of Myricom’s Datagram Bypass Layer(DBL), Solarflare’s OpenOnload, and Voltaire’s Messaging Accelerator(VMA). Both DBL and VMA were born from fifteen years of MPI experience, and they were crafted to provide kernel bypass on Linux. Initially, DBL only supported the Unreliable Datagram Protocol (UDP), and it took Myricom nearly two more years to add Transmission Control Protocol (TCP) support. While Myricom was able to morph their Myrinet eXpress (MX) stack into DBL, the fact remained that they didn’t have their own ULN TCP stack and were torn between licensing one versus building their own. An interesting side note, the initial customer motivation to create DBL was for a storage company called SANBlaze, but Myricom quickly realized that it could also use DBL to accelerate stock market data for Chicago traders.
At that time 10GbE Network Interface Cards (NICs) had a 1/2 round trip for UDP based market data of about 10-15 microseconds. The initial version of DBL brought that down to under five microseconds. In financial trading, there is a direct correlation between time and money, and saving 5-10 microseconds on market data delivery means the difference between winning or losing a bid. At nearly the same time Solarflare also appeared in Chicago promoting its new OpenOnload that accelerated not only UDP but also the more complex TCP sessions. While market data comes in on UDP packets, orders into the exchanges are submitted using TCP. At the same time, and in parallel to this, one of the two biggest HPC Infiniband players Voltaire, later acquired by Mellanox, had crafted its own ULN called VMA. It too had realized that the lucrative financial markets were demanding ULN technology, and the time was right to apply their kernel bypass solution to this problem as well.
For four years, it was a three-way horse race between DBL, OpenOnload, and VMA for the best ULN solution on Linux providing support for both UDP and TCP. Since 2010 ULN for both UDP and TCP has come into production at nearly all of the worldwide financial exchanges, institutional banks, and high-frequency traders. While DBL and VMA still exist today, they make up less than 5% of utilization of ULN technology within financial customers. It turns out that in the fall of 2012 Myricom privately demonstrated to Google the value of using DBL to accelerate a Web2.0 application used extensively throughout Google called Memcached. By March of 2013 Google had acquired the necessary people and intellectual property from Myricom to bring both DBL and Myricom’s latest NIC technology in-house. With the core DBL development team gone, DBL’s utilization within the financial markets waned, and those customers have moved on to OpenOnload. Since then Google has dramatically expanded its use of this ULN technology in-house. Roughly four years ago with the adoption of VMA falling off to less than 2% adoption, Mellanox open-sourced VMA and moved it out to Github. Quietly over the past several years as other cloud providers had recognized Google’s ULN moves, these other players have begun spawning their own ULN projects.
At the same time in 2013 as word leaked out that Google had its own internal ULN project, Intel released their Data Plane Development Kit (DPDK). With DPDK it became much easier for applications to gain access directly to the raw networking device. This did not go unnoticed by China’s Tencent Cloud team as they started with the open source Free-BSD stack, carved out what they needed from it, then ported that on-top of DPDK. The resulting project was called F-Stack, and it can be found on Github today. Other projects like the OpenFastPath Foundation driven by Nokia, ARM, Cavium, and Marvell our advancing their own ULN. So today if you’re seeking out a ULN partner that supports both UDP and TCP your top five options are Solarflare’s Cloud Onload, VMA, F-Stack, OpenFastPath, and Seastar. Only one of these though is commercially available and fully supported, Solarflare’s Onload.
As you consider how you might accelerate your network intensive Web2.0 applications like web servers, software load balancers, in-memory databases, micro-service frameworks, and distributed compute grids you should consider Solarflare’s Cloud Onload. With Cloud Onload we’ve seen performance gains ranging from 50%-400% depending on how network intensive an application is. Over the past decade, Solarflare’s Onload technology has accelerated electronic trading worldwide, and today over 90% of all exchanges, institutional banks, and high-frequency trading shops have installed Onload. The only other ULN technology that even comes close to the worldwide adoption of Onload is MPI, but that’s a ULN stack designed for HPC messaging and it does not support UDP or TCP. If your enterprise relies on any of the Web2.0 classes mentioned above, consider reaching out to Solarflare to learn how they can accelerate your network traffic.