Equifax & Micro Segmentation

Earlier this week it was reported that an Equifax web service was hacked creating a breach that existed for about 10 weeks. During that time the attackers used that breach to drain 143 million people’s private information. The precise technical details of the breach, which Equifax claims was detected and closed on July 29, has yet to be revealed. While it says it’s seen no other criminal activity on its main services since July 29th that’s of little concern as Elvis has left the building. At 143 million that means a majority of the adults in the US have been compromised. Outside of Equifax specific code vulnerabilities or further database hardening what could Equifax have done to thwart these attackers?

Most detection and preventative countermeasures that could have minimized Equifax’s exposure employ some variation of behavior detection at one network layer. They then shunt suspect traffic to a sideband queue for further detailed human analysis. Today the marketing trend to attract Venture Capital investment is to call these behavior detection algorithms Artificial Intelligence or Machine Learning. How intelligent they are, and to what degree they learn is something for a future blog post. While at the NGINX Conference this week we saw several companies selling NGINX layer-7 (application layer) plugins which analyzed traffic prior to passing it to NGINX’s HTML code evaluation engine. These plugins receive the entire HTML request after the OS stack has assembled it from multiple network packets. They then do a rapid analysis the request to determine if it poses a threat. If not then the request is passed back to NGINX for the web application to respond to. Along the way, the plugin abstracts metadata from the request and in parallel, it shoots that up to their cloud service for further evaluation. This metadata is then compared against prior history and other real-time customer data from with similar services to extract new potential threat vectors. As they are detected rules are then pushed back down into the plugin that can be applied to future packets.

Everything discussed above is layer-7, the application layer, traffic analysis, and mitigation. What does layer-7 have to do with network micro-segmentation? Nothing, what’s mentioned above is the current prevailing wisdom instantiated in several solutions that are all the rage today. There are several problems with a layer-7 solution. First, it competes with your web application for host CPU cycles. Second, if the traffic is determined to be malicious you’ve already invested tens of thousands of CPU instructions, perhaps even in excess of one hundred thousand instructions to make this determination, all that computer time is lost once the message is dropped. Third, the attack is now deep inside your web server and whose to say the attacker hasn’t learned what he needed to move to a lower layer attack vector to evade detection. Layer-7 while convenient, easy to use, and even easier to understand is very inefficient.

So what is network micro-segmentation, and how does it fit in? Network segmentation is the act of altering the flow of traffic such that only what you want is permitted to pass. Imagine the factory that makes M&Ms. These days they use high-speed cameras and other analytics that look for deformed M&Ms and when they see one they steer it away from the packaging system. They are in fact segmenting the flow of M&Ms to ensure that only perfect candy-coated pieces ever make it into our mouths. The same is true for network traffic, segmentation is the process of only allowing network packets to flow into or out of a given device via a specific policy or set of policies. Micro-segmentation is doing that down to the application level. At Layer-3, the network layer, that means separating traffic by the source and destination network address and port, while also taking into account the protocol (this is known as “the five-tuple”, a set of five elements). When we focus on filtering traffic by network port we can say that we are doing application level filtering because ports are used to map network traffic to applications. When we also take into account the local IP address for filtering then we can also say we filter by the local container (ex. Docker) or Virtual Machine (VM) as these can often get their own local IP address. Both of these items together can really define a very specific network micro-segmentation strategy.

So now imagine a firewall inside a smart network interface card (NIC) that can filter both inbound and outbound packets using this network micro-segmentation. This is at layer-3, the Network, micro-segmentation within the smart NIC. When detection is moved into the NIC no x86 CPU cycles are consumed when evaluating the traffic, and no host resources are lost if the packet is deemed malicious and is dropped. Furthermore, if it is a malicious packet and it’s stopped by a firewall in the NIC then the threat has never entered the host CPU complex, and as such, the system’s integrity is preserved. Consider how this can improve an enterprise’s security as it scales out both with new servers, as well as adding containers and VMs. So how can this be done?

Solarflare has been shipping its 8000 line of smart NICs since June of 2016, and later this fall they will release a new firmware called ServerLock(TM). ServerLock is a first generation firewall in the smart NIC that is centrally managed. Every second it sends a summary of network flows through the NIC, in both directions, to a central ServerLock Manager system. This system then allows administrators to view these network flows graphically and easily turn them into security roles and policies that can then be deployed. Policies can then be deployed to a specific local IP address, a collection of addresses (think Docker containers or VMs) called an “IP Set”, a host or host groups. When deployed policies can be placed in Monitor or Enforce mode. Monitor Mode will allow all traffic to flow, but it will generate alerts for all traffic outside of all the defined policies for a local IP address. In Enforce mode, ONLY traffic conforming to the defined policies will be permitted. Traffic outside of those policies will generate an alert and be dropped. Once a network device begins to drop traffic on purpose we say that that device is segmenting the network. So in Enforce mode, ServerLock smart NICs will actively segment that server’s network by only passing traffic for supported applications, only those for which a policy exists. This applies to traffic in both directions, so for example, if an administrator walks into the data center, grabs a keyboard and elects to Secure Copy (SCP) a file from a database server to his workstation things will get interesting. If the ServerLock smart NIC in that database server doesn’t have a policy supporting SCP (port 22) his outbound request from that database server to his workstation will be dropped in the NIC. Likely unknown to him an alert will be generated on the central ServerLock Manager console calling out the application and both the database server and his workstation, and he’ll have some explaining to do.

ServerLock begins shipping this fall so while it’s too late for Equifax it’s not too late for the next Equifax. So how would this help moving forward? Simple, if every server, including web servers and database servers, has a ServerLock smart NIC then every second these servers would report their flow data to the central Solarflare ServerLock Manager for further analysis. Solarflare is working with Cloudwick to do real-time analysis of this layer-3 traffic so that Cloudwick can then proactively suggest in real time back to ServerLock administrators new roles and policies to proactively protect servers against all sorts of threats. More to come as this product is released.

9/11/17 Update – It was released over the weekend that Equifax is now pointing the blame at an Apache Struts module. The exact module has yet to be disclosed, but it could be any one of the following that has been previously addressed. On Saturday The Apache group replied pointing to other sources that believe it might have been caused by exploiting a remote code execution bug in their REST plugin as outlined in CVE-2017-9805. More to come.

9/12/17 Update – Alert Logic has the best analysis thus far.

Cloaked Data Lakes

Once Jessie James was asked why he robbed banks and answered: “Because that’s where the money is?” Today a corporation’s most valuable asset, aside from its people, is its data. For those folks who are Star Trek fans imagine if you could engage your data lake’s network cloaking device just before deployment? It would waver out of view then totally disappear from your enterprise network to all but those who are responsible for extracting value from it. Your key data scientists and applications could still see and interact with your cloaked data lakes, but to others exploring and scanning the network, it would be entirely transparent as if it were not even there.

Imagine if you will that a Klingon Bird of Prey is cloaked and patrolling the Neutral Zone. Along comes the Federation Starship Enterprise, also patrolling the Neutral Zone, but the Federation is actively scanning the quadrant. Since the Klingon ship is Cloaked the Federation can’t detect them, but the moment the Enterprises scanners pass over the Bird of Prey it automatically jumps to red alert, energizes its weapons systems and alters course to shadow the Federation ship. Imagine if the same could be true of an insider threat or an internal breach via say a phishing attack that is seeking out your companies data. The moment someone pings a system or executes a port scan of even one IP addresses of the servers within your data lake alarm bells are set off, and no reply is returned. The scanner would see no answer, and expect that nothing exists, little would they know the hell that would soon reign down on them.

Your network administrators would then be alerted that their new server orchestration system had raised an alert. They’ll quickly see that the attacker is another admin’s workstation, someone that has been suspected of being an insider threat, but they’ve been too cagey to nail down. Now it’s 9 PM at night, and he’s port scanning the exact range of internal network addresses that were set aside a week earlier for this new data lake. He then moves on to softer targets exfiltrating data from older systems. Little does he know though that every server he’s touched the past week has been tracking and reporting every network flow back to his workstation. Management was just waiting for the perfect piece of evidence and this attempted port scan, along with all the other network flows was the final straw.

His plan had been to finish out the week, then quit on Friday and sell all his companies data to its competitors. He had decided to stay on an extra two weeks when he heard they were standing up a new Hadoop cluster. He figured that it would make a juicy soft target with tons of the newest aggregated data which could be enormously valuable. What he didn’t know, because he wasn’t invited to those planning meetings, was that the cluster included a new stealth security feature from Solarflare called Active Cloaking. He also wasn’t aware that that feature was the driving reason why many of his companies servers over the past two weeks had been upgraded to new Solarflare 10GbE NICs with ServerLock.

Since he was a server administrator responsible for some of the older legacy systems he wasn’t involved in the latest round of network upgrades. While he had noticed that lately some of the newer servers were no longer accessible to him via SSH, what he wasn’t aware of was that every server he touched was now reporting his every move. What would prove even more damning though was that some of those older servers, which had been upgraded with Solarflare ServerLock enabled NICs, were left as internal SSH/SCP honeypots with old legacy data that held little if any real value, but would prove damning evidence once compromised. Tonight had proved to be his downfall, his manager, and his VP, along with building security had just entered his cubical and stated that the police were on their way.

At Black Hat last month both Solarflare and Cloudwick (CDL) demonstrated ServerLock and data lake cloaking. In September several huge enterprises will begin testing SeverLock, and if you’re an insider threat consider yourself warned!

1st Ever Firewall in a NIC

Last week at Black Hat Solarflare issued a press release debuting their SolarSecure solution, which places a firewall directly in your server’s Network Interface Card (NIC). This NIC based firewall called ServerLock, not only provides security, but it also offers agentless server-based network visibility. This visibility enables you to see all the applications running on every ServerLock enabled server. You can then quickly and easily develop security policies which can be used for compliance or enforcement. During the Black Hat show setup, we took a 10-minute break to have an on-camera interview with Security Guy Radio that covered some of the key aspects of SolarSecure.

SolarSecure has several very unique features not found in any other solution:

  • Security and visibility are entirely handled by the NIC hardware and firmware, there are NO server side software agents, and as such, the solution is entirely OS independent.
  • Once the NIC is bound to the centralized manager it begins reporting traffic flows to the manager which then represents those graphically for the admins to easily turn into security policies. Policies can be created for specific applications, enabling application level network segmentation.
  • Every NIC maintains separate firewall tables for each local IP address hosted on the NIC to avoid potential conflicts from multiple VMs or Containers sharing the same NIC.
  • Each NIC is capable of handling over 5,000 filter table rules along with another 1,000 packet counters that can be attached to rules.
  • Packets transit the rules engine between 50 and 250 nanoseconds so the latency hit is negligible.
  • The NIC filters both inbound and outbound packets. Packets which are dropped as a result of a match to a firewall rule generate an alert on the management console and inbound packets consume ZERO host CPU cycles.

Here is a brief animated explainer video which was produced prior to the show that sets up the problem and explains Solarflare’s solution. We also produced a one-minute demonstration of the management application and its capabilities.

What’s a Smart NIC?

While reading these words, it’s not just your brain doing the processing required to make this feat possible. We’ve all seen over and under exposed photos and can appreciate the decision making necessary to achieve a perfect light balanced photo. In the laboratory, we observed that the optic nerve connecting the eye to the brain is responsible for measuring the intensity of the light hitting the back of your eye. In response to this data, each optic nerve dynamically adjusts the aperture of the iris in your eye connected to this nerve to optimize these levels. For those with some photography experience, you might recall that there is a direct relationship between aperture (f-stop) and focal length. It also turns out that your optic nerve, after years of training as a child, has come to realize you’re reading text up close, so it is now also responsible for modifying the muscles around that eye to sharpen your focus on this text. All this data processing is completed before your brain has even registered the first word in the title. Imagine if your brain was responsible for processing all the data and actions that are required for your body to function properly?

Much like your optic nerve, the difference between a standard Network Interface Card (NIC) and a smart NIC is how much processing the Smart NIC offloads from the host CPU. Until recently Smart NICs were designed around Field Programmable Gate Array (FPGA) platforms costing thousands of dollars. As their name implies, FPGAs are designed to accept localized programming that can be easily updated once installed. Now a new breed of Smart NIC is emerging that while it isn’t nearly as flexible as an FPGA, they contain several sophisticated capabilities not previously found in NICs costing only a few hundred dollars. These new affordable Smart NICs can include a firewall for security, a layer 2/3 switch for traffic steering, several performance acceleration techniques, and network visibility with possibly remote management.

The firewall mentioned above filters all network packets against a table built specifically for each local Internet Protocol (IP) address under control. An application processing network traffic is required to register a numerical network port. This port then becomes the internal address to send and receive network traffic. Filtering at the application level then becomes a simple process of only permitting traffic for specific numeric network ports. The industry has labeled this “application network segmentation,” and in this instance, it is done entirely in the NIC. So How does this assist the host x86 CPU? It turns out that by the point at which operating system software filtering kicks in the host CPU has often expended over 10K CPU cycles to process a packet. If the packet is dropped the cost of that drop is 10K lost host CPU cycles. If that filtering was done in the NIC, and the packet was then dropped there would be NO host CPU impact.

Smart NICs also often have an internal switch which is used to steer packets within the server rapidly. This steering enables the NIC to move packets to and from interfaces and virtual NIC buffers which can be mapped to applications, virtual machines or containers. Efficiently steering packets is another offload method that can dramatically reduce host CPU overhead.

Improving overall server performance, often through kernel bypass, has been the providence of High-Performance Computing (HPC) for decades. Now it’s available for generic Ethernet and can be applied to existing and off the shelf applications. As an example, Solarflare has labeled its family of Kernel Bypass accelerations techniques Universal Kernel Bypass (UKB). There are two classes of traffic to accelerate: network packet and application sockets based. To speed up network packets UKB includes an implementation of the Data Plane Development Kit (DPDK) and EtherFabric VirtualInterface (EF_VI), both are designed to deliver high volumes of packets, well into the 10s of millions per second, to applications familiar with these Application Programming Interfaces (APIs). For more standard off-the-shelf applications there are several sockets based acceleration libraries included with UKB: ScaleOut Onload, Onload, and TCPDirect. While ScaleOut Onload (SOO) is free and comes with all Solarflare 8000 series NICs, Onload (OOL) and TCPDirect require an additional license as they provide micro-second and sub-microsecond 1/2 round trip network latencies. By comparison, SOO delivers 2-3 microsecond latency, but the real value proposition of SOO is the dramatic reduction in host CPU resources required to move network data. SOO is classified as “zero-copy” because network data is copied once directly into or out of your application’s buffer. SOO saves the host CPU thousands of instructions, multiple memory copies, and one or more CPU context switches, all dramatically improve application performance, often 2-3X, depending on how network intense an application is.

Finally, Smart NICs can also securely report NIC network traffic flows, and packet counts off the NIC to a centralized controller. This controller can then graphically display for network administrators everything that is going on within every server under its management. This is real enterprise visibility, and since only flow metadata and packet counts are being shipped off NIC over a secure TLS link the impact on the enterprise network is negligible. Imagine all the NICs in all your servers reporting in their traffic flows, and allowing you to manage and secure those streams in real time, with ZERO host CPU impact. That’s one Smart NIC!

5 Petabytes of Public Hadoop Data

HadoopSecurityBack in 2015, I sat through a DOE presentation during a government cyber security conference on SCADA (Supervisory Control and Data Acquisition) systems accessible from the web. SCADA is used to allow computers to manage public utilities, water, gas, petroleum refineries, nuclear power plants, etc… The speaker did a live demo using Shodan where he was able to demonstrate something like over 65K open SCADA networks reachable from the Internet. This article backs up the above-mentioned presentation, though the author points out that the maps only show German made SCADA systems. To be more precise the maps show Seimens SCADA controllers, which dominate the market. Most of these systems were for industrial control, and they should have been air-gapped, physically not connected, to ANY external network, let alone the Internet. Last night a friend suggested I read “Hadoop Servers Expose Over 5 Petabytes of Data” which shows that Hadoop clusters are no different.

Guess what? Shodan was leveraged again, but this time to find Internet accessible Hadoop clusters. In aggregate it found clusters containing upwards of 5 Petabytes, which for those without a computer science degree that’s 5 million Gigabytes. The article goes on to mention that over the past year nearly 500 Hadoop systems have been held for ransom. The article then goes on to point out where to go to secure a Hadoop system.  I bring all this up because very soon at Black Hat in July Solarflare will be demonstrating with Cloudwick how we can use the server NIC hardware to directly secure a Hadoop cluster. This can be done without changing a single line of code or altering the Hadoop configuration, stay tuned…

Black Hat 2016: NIC Packet Filtering

Solarflare wants to talk with you at Black Hat in Las Vegas next month, and we’re raffling off a Wifi Pineapple to those who sign up for a meeting. What is a Wifi Pineapple you ask, perhaps one of the best tools available for diagnosing wireless security issues?

At Black Hat, Solarflare will be talking about their new line of SFN8xxx series adapters that support five-tuple packet filtering directly in hardware. The SFN8xxx series adapters support thousands of filters and an additional one thousand counters that can be applied to track filter usage. Along with filtering, we’ll be discussing the tamper-proof nature of this new line of adapters, and its capability to support over the wire firmware or filter table updates via an SSL/TLS link directly to the controller on the adapter.

To learn more or set up a meeting for Wednesday, August 3 or Thursday, August 4th at Black Hat please send an email to scollins@solarflare.com, and you’ll be automatically enrolled in our drawing for a Wifi Pineapple.

Popular Cyber Security & Networking Acronyms

Thanks in part to IBM, no field uses acronyms like computer science. Recently I was asked to pick up product management responsibility for an evolving new line of cybersecurity products. To be relevant one needs to be current with the trendy lingo, as such here are some of the must-know acronyms. So if you’re a budding cyber security student, or hacker in training see how many of these you know off the top of your head. Note, every one of these has been checked, and the full expansion of the acronym links to the appropriate Wikipedia page.  Good luck, and enjoy.

ACL – Access Control List
AES – Advanced Encryption Standard
APT – Advanced Persistent Threat
ARP – Address Resolution Protocol
AV – AntiVirus
BGP – Border Gateway Protocol
BIND – Berkley Internet Name Domain
CAL – Client Access License
CERT – Computer Emergency Response Team
CMDB – Configuration Management Database
CRC – Cyclic Redundancy Check
CVE – Common Vulnerabilities and Exposures
DES – Data Encryption Standard
DLP – Data Loss Prevention
DNS – Domain Name System, although Service is also common
EAP – Extensible Authentication Protocol
EGP – Exterior Gateway Protocol
EMM – Enterprise Mobility Management
HIPS – Host-based Intrusion Prevention System, Wikipedia doesn’t have a unique listing for this one.
IPS – Intrusion Prevention System
IPsec – Internet Protocol Security
IDS – Intrusion Detection System
L2F – Layer-2 Forwarding protocol
L2TP – Layer-2 Tunneling Protocol
LDAP – Lightweight Directory Access Protocol
MAC – Media Access Control, as in MAC address
MAC – Mandatory Access Control
NAC – Network Access Control
NAT – Network Address Translation
NGFW – Next-Generation Firewall
NIST – National Institute of Standards and Technology
OSI – Open Systems Interconnection
OSPF – Open Shortest Path First
PAP – Password Authentication Protocol
PFS – Public-key Forward Secrecy
PGP – Pretty Good Privacy
PKI – Public Key Infrastructure
PPP – Point to Point Protocol
PPTP – Point to Point Tunneling Protocol
RARP – Reverse Address Resolution Protocol
RIP – Routing Information Protocol
RSA – Rivest-Shamir-Adleman
SCAP – Security Content Automation Protocol
SDN – Software Defined Networking
SIEM – Security Information Event Management
SNMP – Simple Network Management Protocol
SSH – Secure Shell
SSL – Secure Sockets Layer
TLS – Transport Layer Security
URI – Uniform Resource Identifier
VPN – Virtual Private Network
WAP – Wireless Application Protocol
WEP – Wired Equivalent Privacy

If it’s not on this list that doesn’t mean it’s not important, just that I’ve not yet stumbled across it, or Wikipedia doesn’t recognize it as an industry term but is likely a vendor-initiated one.

Next Generation Network (NGN) Forensics

In two weeks I’ll be hosting two events: one near the NSA at the Courtyard Fort Meade on the 27th, and the second a few miles from the CIA at the Hilton Mclean Tyson Corner. Both will start at 4 PM, have a considerably strong Network Forensics agenda, and then wrap up by 7 PM. Both events are identical, they’re free to attend, and we’ll be providing beer, wine & soda along with appetizers.

Below is the current agenda, but it’s still somewhat fluid at this point as it’s the first NGN we’re doing that is focused on Network Forensics, and is setup for the Intelligence Community. The dozen or so prior NGNs, and another later that week have been centered on the Financial Trading market where our leadership in low latency is well known. Here is the current agenda:

  • 3:30 – 4:00  Registration, drinks and snacks
  • 4:00 – 4:05  Welcome & Introductions – Paul Bravo, Solarflare VP US/OEM Sales
  • 4:05 – 4:35  Keynote Speaker – David Riddoch, Founder, Solarflare
  • 4:35 – 4:50  Dell – Cameron Chehreh, CTO Federal
  • 4:50 – 5:35  Panel: Deep Packet Inspection (Snort, Suricata & Bro)
  • 5:35 – 5:45  Reservoir Labs – Alison Ryan, VP Business Development
  • 5:45 – 6:15  Advances in Capture – Ron Miller, Director Technical Marketing, Solarflare
  • 6:15 – 6:45  Open Q&A of all speakers
  • 6:45 – 7:30  Reception & Demonstrations

I’ll moderate the panel on Deep Packet Inspection which will include:  Eileen Donnelly, US Government, Erik Mogus Director Sales Engineering for Reservoir Labs, and someone to be named shortly. The purpose of the panel is to compare and contrast the different approaches to packet inspection so someone familiar with one can see different perspectives on the other two.  The audience will also be encouraged to ask questions of the panelists.

To sign up for either event please use one of the links below:

Tuesday, October 27th l Time: 3:30-7:30 PM
Courtyard Marriott Fort Meade, 2700 Hercules Rd, Annapolis Junction, MD

Click to attend
Wednesday, October 28th l Time: 3:30-7:30 PM
Hilton McLean Tysons Corner, 7920 Jones Branch Drive, McLean, VA
Click to attend

 

Detecting Data Breaches in Real Time

Not a week passes without news of another company announcing a data security breach. Many of these breaches start with the Point of Sale (POS) systems, but as we saw with Anthem, Sony and Edward Snowden, that isn’t always the case. Regardless of where the breach starts, nearly all of the valuable data lost flows through, and eventually out of the enterprise. Imagine if a small team of clowns walked into your business in the middle of the day, went straight to your server room, pulled out big clown scissors, cut all the cables front and back on your servers and proceeded to carry them out to their clown car. Certainly, employees would question what was going on, and surely someone would stop them before the servers actually left the building. Today that’s exactly what’s happening; only the clowns are black hat hackers acting remotely.

All companies have firewalls, many have intrusion detection systems, and some install intrusion prevention systems, but does your company capture and analyze all the traffic flows entering, and leaving your enterprise? Even more daunting, imagine capturing all of the flows within your company, then scrubbing that data looking for unique traffic patterns, perhaps in real time? At then end of December Norse specifically identified the Sony employee who was laid off in May, and who departed with tens of gigabytes of Sony movies and digital assets. This employee was someone in IT, possibly very much like you who had access to many of the digital security certificates, admin ids and passwords within Sony, many of those items were included in files and spreadsheets that Gods Of Peace released. Sony knew months before that they were separating people from the business, had they been looking for unusual internal network traffic patterns they might very well have been able to thwart this digital theft.

For the rest of the story please visit the full article in this months issue of Cyber Defense Magazine.

A 10GbE Capture Platform: Snort, Bro, Suricata & Wireshark

Perhaps you’re responsible for your companies network security, or maybe you’re designing an appliance for your business?  If so, then you’ve likely already become familiar with SnortBro,  Suricata, and Wireshark. As you may have recently discovered for real performance with these applications at 10GbE speeds you need the proper adapter, and capture driver or you risk dropping vast numbers of packets. Furthermore, it is now possible to not only capture a copy of the packets received on the server but also transmitted. All while running your programs on other cores within the same server. Furthermore, if you’re interested in capturing all the received, transmitted, and virtual machine (VM) to VM traffic within your server then you can actually designate one VM to capture a copy of all the network traffic for analysis. To further sweeten things, this can also be done from within a Docker container built to handle capture.

Some might ask why you would want to capture transmitted packets and run them through Snort, Bro or Suricata? Simple, to look for outbound traffic patterns that might indicate a breach. Perhaps a VM on one of your servers has been compromised, and it is sending out your companies precious AutoCAD files in the middle of the night to a country in Asia you don’t do business with. If you’re not looking at transmitted packets you may never detect, or stop a breach of this nature. Setting up rules to look for file transfers of specific types, during specific times, or conforming to other criteria specific to outbound traffic is a fairly new trend. Also, this capture doesn’t have to be packets on your server, you can take a more traditional approach and dedicate a server for capture in every rack, then use an optical tap or the spanning port off a switch. In fact, you can install multiple adapters and aggregate the ports together until you hit the performance limits of your system.

Most accelerated 10G capture platforms require both a performance adapter and a special purpose capture driver.  Furthermore to capture both received and transmitted packets in parallel you have only one choice, and that is an adapter and software from Solarflare. You can start with Solarflare’s Flareon Ultra SFN7122F adapter and a SolarCapture Live license, and as your needs grow scale to their dual 40G adapter the SFN7142Q.

Solarflare provides this high-performance capture platform designed specifically for engineers looking to build leading edge security solutions. Let’s take a closer look at the adapter and software. The network server adapter, the Solarflare SFN7122F, is a board that contains one Solarflare single core Ethernet controller chip. This Ethernet controller core on this chip has multiple packet engines each dedicated to processing received or transmitted packets. This enables the SFN7122F adapter to support wire-rate lossless packet capture, even with huge bursts of the smallest sized packets (64 bytes each) on a single port. This dedication of resources enables transmitting wire-rate 64-byte packets at the same time, on the same interface, and in parallel, without impacting capture performance. Furthermore, the SFN7142Q utilizes the same Ethernet controller, but with two of these on the same chip so it can support capture on two 40G ports, or four 10G port, or wire-rate lossless capture on two 10G ports.

The next component in this platform is SolarCapture Live (SCL), which provides a complete Libpcap replacement library, and a Snort DAQ interface. This allows for two fairly seamless methods for easily connecting to Snort. If SCL is initialized in cluster mode it can spawn multiple capture instances, up to one per core, and deliver all network packets in Libpcap format spread across these cores. SCL then uses advanced receive flow steering to flow-hash the packets across all of these capture nodes within the capture cluster. Flow-hashing is the process of looking at several key fields in the packet header then always routing all the traffic from a given flow consistently to the same cluster node (core) so security applications like Snort, Suricata and Bro can always see all the given data for that specific network flow.

This Solarflare capture platform also supports an optional Solarflare Precision Time Protocol (PTP) software license that can accept an external hardware Pulse Per Second (PPS) signal (via an additional optional bracket kit) which provides the necessary mini-BNC connectors that can then be used to attach the adapter to an external master clock. Unlike similar adapters, this optional PCIe faceplate has a second mini-BNC connector to support daisy chaining the clock signal out of the adapter into another adapter. These Solarflare adapters include a highly precise clock chip, the Stratum 3, this ensures that time stamping is accurate to within 100 nanoseconds from the PTP master, precision time stamping is typically only available on much more expensive FPGA based adapters. Furthermore, the PTP license enables time stamping for the capture of both received and transmitted packets, so you can use it to measure application performance. Additionally, Solarflare’s 100 nanosecond precision is 15X more precise than a competing adapter at a similar price point that only captures and time stamps inbound packets.

So if you’re looking to get into packet capture for security monitoring or performance analysis, please consider contacting Solarflare, and ask about their SFN7122F with SolarCapture Live. You’ll be pleasantly surprised at how well it performs when compared to the much more expensive FPGA based solutions which sell for 5X or more the price of this unique bundle.