Last night while channel surfing I came across Men in Black III, and was dropped right into the scene where a 1969 Tommy Lee Jones was placing Will Smith into the
Those of us who grew up in the 1960s and 70s lived through the miniaturization wave as the Japanese led the industry by shrinking radios and televisions from cabinet sized living room appliances to handheld devices. One year for Father’s Day in the late 70s we bought my dad a portable black and white TV with a radio that ran on batteries so he could watch it on the boat in the evenings. It was roughly the size of three laptops stacked on top of one another. It may sound corny now, but it was amazing back then. Today we watch theater quality movies in color, on a much larger screen from a device that drops into our pocket and
Last year the industry began etching chips with a new seven nanometer process, which is equivalent to Intel’s 10nm process. Apple’s A12 Bionic chip that powers
In a 1965 paper by Gordon Moore,
Back in 2016 a team at Lawrence Berkley National Labs demonstrated a one nanometer transistor device, but that leveraged Carbon nanotubes to manage electron flow and stave off the quantum tunneling effect. For those not familiar with Carbon nanotubes think teeny tiny diamond straws where the wall of the straw is one atom thick. While using Carbon nanotubes to solve the problem is ingenious, it doesn’t fit into how we make chips today as you can’t etch a Carbon nanotube using conventional chip fabrication processes. So while it’s a solution to the problem it’s one that can’t easily be utilized. So we may be working at 7nm for some time to come. This only means that one aspect of miniaturization has ground to a halt. When I’ve used the term chip above to represent an integrated circuit the more precise term is actually a “die.”
Until recently it was common practice to place a single “die” inside a package. A package is what most of us think of as the chip as it has a bunch of metal pins coming out of the bottom or sides. In recent years the industry has developed new techniques that allow us to layer multiple dies onto one another within the same physical package enabling the creation of very complex chips. This is similar to a seven-layer cake where different types of cake can be in each layer and the icing can be used to convey flavors across the cake layers. This means that a chip can contain several and eventually many dies, or layers. A recent example of this is Xilinx’s new Versal chip line.
Within the Versal chip package there are multiple dies that contain two different pairs of ARM CPU cores, hundreds of Artificial Intelligence (AI) engines, thousands of Digital Signal Processors (DSP), a huge Field Programmable Gate Array (FPGA) area, several classes of memory, and multiple programmable memory, PCIe and Ethernet controllers. The Versal platform is a flexible toolbox of computational power, with the ARM cores handling traditional CPU and real-time processing tasks. The AI cores churn through new machine learning workloads while the DSPs are leveraged for advanced signal processing, think 5G, and the FPGA can be used as the versatile computational glue to pull all these complex engines together. Finally, we have the memory, PCIe and Ethernet controllers to interface with the real world. So while Intel and AMD focus on scaling the number CPU cores on the chip and NVidia works to improve Graphical Processing Unit (GPU) density Xilinx’s is the first to go all-in on chip-level workload integration. This is the key to accelerating the data center going forward.
So until we solve the quantum tunneling problem, with new fabrication techniques, we can utilize advances in integration as shown above to move the industry forward.